
Automation 101: The Guide

Index
• Virtual Machine Installation

◦ Download Image

◦ Preparation of VM

◦ Install the VM

◦ Setting up the VM

• Create Test Environment

◦ Create User and grant privileges

• Ansible + Google

◦ Install requisites

◦ Credentials

◦ Test GCP Ansible modules

• Create a Load-Balanced Web Service

◦ Configuring GCE Credentials in Ansible Playbooks

◦ Create GCE Instances

◦ Test GCE Load Balanced Web Instances

Virtual Machine Installation
The installation of the test environment is performed on a KVM-based virtual machine.

Download Image
Useful sites for downloading qcow2 images:

• Fedora Cloud. Cloud Base Images

• OpenStack: Get images

• Red Hat Customer Portal: Download

For this case, we use the image obtained from the Red Hat Customer Portal, using the account
created in Red Hat Developers.

Preparation of VM
• Setting the qcow2 image

1

https://docs.fedoraproject.org/en-US/quick-docs/getting-started-with-virtualization/
https://alt.fedoraproject.org/cloud/
https://docs.openstack.org/image-guide/obtain-images.html
https://access.redhat.com/downloads/content/479/ver=/rhel---8/8.4/x86_64/product-software
https://access.redhat.com/
https://developers.redhat.com/

$ virt-customize -a vmlab01.qcow2 \ ①
> --hostname vmlab01.rootzilopochtli.lab \ ②
> --root-password password:rootpw \ ③
> --ssh-inject 'root:file:labkey.pub' \ ④
> --uninstall cloud-init \ ⑤
> --selinux-relabel ⑥
[0.0] Examining the guest ...
[8.4] Setting a random seed
[8.5] Setting the machine ID in /etc/machine-id
[8.5] Setting the hostname: vmlab01.rootzilopochtli.lab
[8.5] SSH key inject: root
[9.4] Uninstalling packages: cloud-init
[11.3] Setting passwords
[12.0] SELinux relabelling
[22.1] Finishing off

① Add disk image file

② Set hostname

③ Set root password

④ Add ssh public key to the specified user

⑤ Uninstall useless initialization software

⑥ Due to the modification of several files, SELinux needs to be relabeled

Install the VM
• Move the image disk to /var/lib/libvirt/images:

$ sudo mv vmlab01.qcow2 /var/lib/libvirt/images/

• Install the VM with the image disk (VM is imported):

$ sudo virt-install --name vmlab01 \ ①
> --memory 1024 --vcpus 1 \ ②
> --disk /var/lib/libvirt/images/vmlab01.qcow2 --import \ ③
> --os-type linux --os-variant rhel8.4 \ ④
> --noautoconsole ⑤

Starting install...
Domain creation completed.

① Set the VM name

② Setting up resources for the VM

③ Import disk image as VM disk

④ Set OS type and variant

2

⑤ VM console is not required to be sent as output

Setting up the VM
• Discover the VM’s IP:

$ sudo virsh domifaddr vmlab01
Name MAC address Protocol Address

vnet1 52:54:00:69:aa:90 ipv4 192.168.122.227/24

• Access the VM with ssh key:

$ ssh -i labkey root@192.168.122.227

• Subscribe the VM

As we use the RHEL image, we have to subscribe it with our Red Hat Developers login account to
get packages and updates:

[root@vmlab01 ~]# subscription-manager register
Registering to: subscription.rhsm.redhat.com:443/subscription
Username: <Red Hat Developers Account>
Password: <Red Hat Developers Account Password>
The system has been registered with ID: 22b97e3b-b309-4c2e-9d71-04fc31084c1a
The registered system name is: vmlab01.rootzilopochtli.lab

• Find and attach the subscription:

3

https://developers.redhat.com/

[root@vmlab01 ~]# subscription-manager list --available ①
+---+
 Available Subscriptions
+---+
Subscription Name: Red Hat Developer Subscription for Individuals
Provides: dotNET on RHEL Beta (for RHEL Server)
 Red Hat CodeReady Linux Builder for x86_64
 Red Hat Enterprise Linux for SAP HANA for x86_64
 Red Hat Ansible Engine
...output omitted...
Contract:
Pool ID: 8a85f9a076fc4a87017720f2b38a7277 ②
Provides Management: No
Available: 12
Suggested: 1
Service Type:
Roles: Red Hat Enterprise Linux Server
Service Level: Self-Support
Usage:
Add-ons:
Subscription Type: Standard
Starts: 01/20/2021
Ends: 01/19/2022
Entitlement Type: Physical

[root@vmlab01 ~]# subscription-manager attach --pool=8a85f9a076fc4a87017720f2b38a7277
③
Successfully attached a subscription for: Red Hat Developer Subscription for
Individuals
[root@vmlab01 ~]# subscription-manager role --set='Red Hat Enterprise Linux Server' ④
role set to "Red Hat Enterprise Linux Server".

① Get the list of available subscriptions

② Pool ID

③ Attach the subscription

④ Set VM role

• Adding Ansible repo:

4

[root@vmlab01 ~]# subscription-manager repos --list | grep ansible
Repo ID: ansible-2.8-for-rhel-8-x86_64-debug-rpms
Repo URL: https://cdn.redhat.com/content/dist/layered/rhel8/x86_64/ansible/2.8/debug
Repo ID: ansible-2.8-for-rhel-8-x86_64-source-rpms
Repo URL:
https://cdn.redhat.com/content/dist/layered/rhel8/x86_64/ansible/2.8/source/SRPMS
Repo ID: ansible-2.9-for-rhel-8-x86_64-rpms
Repo URL: https://cdn.redhat.com/content/dist/layered/rhel8/x86_64/ansible/2.9/os
...output omitted...
[root@vmlab01 ~]# subscription-manager repos --enable ansible-2.9-for-rhel-8-x86_64-
rpms
Repository 'ansible-2.9-for-rhel-8-x86_64-rpms' is enabled for this system.

• Installing Ansible:

[root@vmlab01 ~]# dnf -y install ansible
Updating Subscription Management repositories.
Red Hat Enterprise Linux 8 for x86_64 - BaseOS (RPMs) 6.9 MB/s | 33 MB
00:04
Red Hat Ansible Engine 2.9 for RHEL 8 x86_64 (RPMs) 1.2 MB/s | 1.6 MB
00:01
Red Hat Enterprise Linux 8 for x86_64 - AppStream (RPMs) 7.5 MB/s | 30 MB
00:03
...output omitted...
 Verifying : sshpass-1.06-3.el8ae.x86_64
1/3
 Verifying : ansible-2.9.22-1.el8ae.noarch
2/3
 Verifying : python3-jmespath-0.9.0-11.el8.noarch
3/3
Installed products updated.

Installed:
 ansible-2.9.22-1.el8ae.noarch
 python3-jmespath-0.9.0-11.el8.noarch
 sshpass-1.06-3.el8ae.x86_64

Complete!

• Update VM OS:

[root@vmlab01 ~]# dnf clean all
...output omitted...
[root@vmlab01 ~]# dnf update
...output omitted...

• Reboot VM:

5

[root@vmlab01 ~]# reboot

Create Test Environment

Create User and grant privileges
• Create student user with supplementary wheel group:

[root@vmlab01 ~]# useradd student -G wheel
[root@vmlab01 ~]# passwd student
Changing password for user student.
New password: student
BAD PASSWORD: The password is shorter than 8 characters
Retype new password: student
passwd: all authentication tokens updated successfully.

NOTE

This allows the user to execute any command with sudo and its password. If no
password is to be used with sudo, it is necessary to enable it in /etc/sudoers,
commenting out and uncommenting the corresponding lines, as follows:

%wheel ALL=(ALL) NOPASSWD: ALL

• Add ssh key to student user:

$ ssh-copy-id -i labkey.pub student@192.168.122.227

• Log in to the VM and test the configuration:

$ ssh -i labkey student@192.168.122.227

Last login: Fri Jun 4 17:34:21 2021 from 192.168.122.1
[student@vmlab01 ~]$ sudo -l
Matching Defaults entries for student on vmlab01:
 !visiblepw, always_set_home, match_group_by_gid, always_query_group_plugin,
env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE KDEDIR LS_COLORS",
env_keep+="MAIL
 PS1 PS2 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE", env_keep+="LC_COLLATE
LC_IDENTIFICATION LC_MEASUREMENT LC_MESSAGES", env_keep+="LC_MONETARY LC_NAME
LC_NUMERIC
 LC_PAPER LC_TELEPHONE", env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET
XAUTHORITY", secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin

User student may run the following commands on vmlab01:
 (ALL) NOPASSWD: ALL

6

• Install pip

[student@vmlab01 ~]$ sudo dnf install python3-pip

Ansible + Google
Ansible contains modules for managing Google Cloud Platform resources, including creating
instances, controlling network access, working with persistent disks, managing load balancers, and
a lot more.

Install requisites
The GCP modules require both the requests and the google-auth libraries to be installed:

[student@vmlab01 ~]$ sudo dnf list python*-requests*
Updating Subscription Management repositories.
Last metadata expiration check: 0:11:09 ago on Fri 04 Jun 2021 05:20:48 PM EDT.
Installed Packages
python3-requests.noarch 2.20.0-2.1.el8_1 @System
...output omitted...
[student@vmlab01 ~]$ sudo pip3 install --user student requests google-auth
Requirement already satisfied: requests in /usr/lib/python3.6/site-packages
Collecting google-auth
...output omitted...
Installing collected packages: pyasn1, rsa, cachetools, setuptools, pyasn1-modules,
google-auth
Successfully installed cachetools-4.2.2 google-auth-1.30.1 pyasn1-0.4.8 pyasn1-
modules-0.2.8 rsa-4.7.2 setuptools-57.0.0

• Create a Work directory

In order to store the required files, create a working directory and switch to it:

[student@vmlab01 ~]$ mkdir workdir && cd workdir

Credentials
To work with the GCP modules, get some credentials in the JSON format:

1. Create a Service Account

2. Download JSON credentials

7

https://developers.google.com/identity/protocols/OAuth2ServiceAccount#creatinganaccount
https://support.google.com/cloud/answer/6158849?hl=en&ref_topic=6262490#serviceaccounts

Test GCP Ansible modules
• Install git:

[student@vmlab01 ~]$ sudo dnf install git

• Clone ansible-gce-apache-lb repo:

[student@vmlab01 workdir]$ git clone https://github.com/AlexCallejas/ansible-gce-
apache-lb.git
Cloning into 'ansible-gce-apache-lb'...
remote: Enumerating objects: 22, done.
remote: Total 22 (delta 0), reused 0 (delta 0), pack-reused 22
Unpacking objects: 100% (22/22), 4.50 KiB | 328.00 KiB/s, done.

• Create a RSA ssh key

By default, Google Compute Engine (GCE) adds the ssh-keys of the platform itself; as we need to
perform some post-creation tasks, a ssh key is required.

[student@vmlab01 workdir]$ ssh-keygen -t rsa -b 4096 -f gcekey

• Create a test instance

Switch to ansible-gce-apache-lb directory and modify the gce-test.yml playbook with your GCE
credentials:

8

- name: Playbook test to create gce instance
 hosts: localhost
 connection: local
 gather_facts: no

 vars:
 service_account_email: <gce service account email> ①
 credentials_file: <path to json credentials file> ②
 project_id: <project id> ③
 machine_type: n1-standard-1 ④
 image: centos-stream-8 ⑤

 tasks:
 - name: Launch instances
 gce:
 instance_names: dev ⑥
 machine_type: "{{ machine_type }}"
 image: "{{ image }}"
 service_account_email: "{{ service_account_email }}"
 credentials_file: "{{ credentials_file }}"
 project_id: "{{ project_id }}"

① In the JSON file it is found as client_email

② For this case: /home/student/workdir/<JSON file>

③ In the JSON file it is found as project_id

④ On the GCP console (menu:Compute Engine[VM Instances > Create an instance]) review
available options

⑤ On the GCP console (menu:Compute Engine[VM Instances > Create an instance]) review
available options

⑥ VM Instance name

Validate in the GCP console that there is no VM instance created:

9

https://console.cloud.google.com/
https://console.cloud.google.com/
https://console.cloud.google.com/

Figure 1. Google Cloud Platform Console

Run the gce-test.yml playbook:

[student@vmlab01 ansible-gce-apache-lb]$ ansible-playbook gce-test.yml

PLAY [Playbook test to create gce instance]
**

TASK [Launch instances]
**
changed: [localhost]

PLAY RECAP
**

localhost : ok=1 changed=1 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

Confirm the creation of the VM instance in the GCP console (menu:Compute Engine[VM Instances]).

Figure 2. VM Instances

Click the btn:[VM Instance] name and then click btn:[DELETE] to delete the instance.

10

https://console.cloud.google.com/

Create a Load-Balanced Web Service

Figure 3. Load-Balanced Web Service

Configuring GCE Credentials in Ansible Playbooks
Modify the ansible-gce-apache-lb playbooks with your GCE credentials:

...output omitted...
vars:
 service_account_email: <gce service account email> ①
 credentials_file: <path to json credentials file> ②
 project_id: <project id> ③
...output omitted...

① In the JSON file it is found as client_email

② For this case: /home/student/workdir/<JSON file>

③ In the JSON file it is found as project_id

Create GCE Instances
• Add the RSA ssh key to gce-apache.yml playbook

11

...output omitted...
- name: Create instances based on image {{ image }}
 gce:
 instance_names: "{{ instance_names }}"
 machine_type: "{{ machine_type }}"
 image: "{{ image }}"
 state: present
 preemptible: true
 tags: http-server
 service_account_email: "{{ service_account_email }}"
 credentials_file: "{{ credentials_file }}"
 project_id: "{{ project_id }}"
 metadata: '{"sshKeys":"<gce_user:ssh_pubkey>"}' ①
 register: gce
...output omitted...

① The format of the metadata should be something like: student:ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQCc3JcGt+BAunQPmm04gCQbF5x9po …"}'

NOTE
To configure the user of the instances in the GCE console, follow the note at
Managing access to VM Instances → Setting up OS Login from Compute Engine
Documentation.

• Run the gce-lb-apache.yml with the RSA ssh key file:

[student@vmlab01 ansible-gce-apache-lb]$ ansible-playbook gce-lb-apache.yml --key-file
/home/student/workdir/gcekey

WARNING

If this process ends with errors, the instances created must be deleted, to avoid
any charges in GCP.

Run the gce-clean.yml playbook:

$ ansible-playbook gce-clean.yml

• Confirms the creation of balanced web instances in GCE:

12

https://cloud.google.com/compute/docs/instances/managing-instance-access#enable_oslogin

Figure 4. VM Web Instances

• Confirms the creation of load balancer instance in GCE

On the GCP console (menu:Network services[Load balancing])

Figure 5. Load Balancer Instance

Test GCE Load Balanced Web Instances
To validate that the balancing is working correctly run curl to the public IP address of the load
balancer instance and confirm that it responds with the public IP address of each web instance:

13

https://console.cloud.google.com/

[student@vmlab01 ansible-gce-apache-lb]$ curl http://34.122.219.159 ①
<!-- Ansible managed -->
<html>
<head><title>Apache is running!</title></head>
<body>
<h1>
Hello from 34.123.97.253 ②
</h1>
</body>
</html>
[student@vmlab01 ansible-gce-apache-lb]$ curl http://34.122.219.159
<!-- Ansible managed -->
<html>
<head><title>Apache is running!</title></head>
<body>
<h1>
Hello from 34.134.29.17 ③
</h1>
</body>
</html>
[student@vmlab01 ansible-gce-apache-lb]$ curl http://34.122.219.159
<!-- Ansible managed -->
<html>
<head><title>Apache is running!</title></head>
<body>
<h1>
Hello from 34.121.213.12 ④
</h1>
</body>
</html>

① Load balancer public IP address

② Web instance web1 public IP address

③ Web instance web2 public IP address

④ Web instance web3 public IP address

WARNING

On completion of testing, remove balanced web instances to avoid GCP
charges.

Run the gce-clean.yml playbook:

$ ansible-playbook gce-clean.yml

14

NOTE

This guide is based on my article published in the Red Hat TAM Blog: Creating a
load-balanced web service on cloud with Ansible.

Alex Callejas | rutil.io/social | 2018

15

https://www.redhat.com/en/blog/creating-load-balanced-web-service-cloud-ansible
https://www.redhat.com/en/blog/creating-load-balanced-web-service-cloud-ansible
https://twitter.com/dark_axl
http://rutil.io/social

	Automation 101: The Guide
	Index
	Virtual Machine Installation
	Download Image
	Preparation of VM
	Install the VM
	Setting up the VM

	Create Test Environment
	Create User and grant privileges

	Ansible + Google
	Install requisites
	Credentials
	Test GCP Ansible modules

	Create a Load-Balanced Web Service
	Configuring GCE Credentials in Ansible Playbooks
	Create GCE Instances
	Test GCE Load Balanced Web Instances

	

